15/06/15

Series CST - CSV and CSH magnetic proximity switches

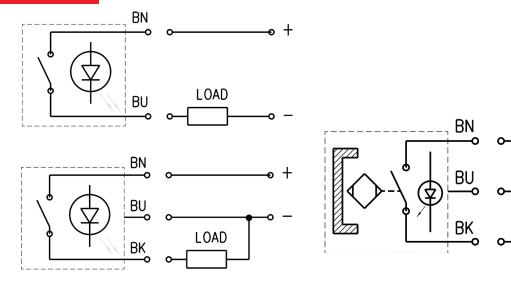
Reed, Electronic

- » Designed to fit into the grooves provided in the profile barrel of the cylinder
- » The three Series CST -CSV - CSH are suitable for the whole Camozzi range of cylinders
- » With or without M8 connector

These switches are available in two different versions: Reed with mechanical switching and electronic with electronic switching. The electronic versions are suggested for heavy duty with frequent operations and strong vibrations.

Series CST-CSV-CSH magnetic proximity switches define the position of the cylinder piston. When the internal contact is actuated by a magnetic field, the sensors complete an electrical circuit and provide an output signal to actuate directly a solenoid valve or a PLC. A yellow LED diode shows when the internal magnetic contact is closed.

connector M8 and cable 0,3 m


GENERAL DATA Models CST-CSV-... CSH-.. Operation Reed contact Electronic Type of output Static or electronic PNP Type of contact Normally Open (NO) or Normally Closed (NC) contacts Voltage See model characteristics Max current See model characteristics Max load Reed switches 8 W DC and 10 VA AC Electronic switches 6 W DC Protection IP 67 Materials Plastic body encapsulating epoxy resin cable in PVC connector PVR connector body in PU Mounting Directly into the grooves, or by means of adapters. Signalling By means of yellow diode Led Protections See model characteristics Switching time Reed switches <1,8 ms Electronic switches <1 ms Operating temperature -10 °C ÷ 80 °C Electrical duration Reed switches 10.000.000 cycles Electronic switches 1.000.000.000 cycles Electrical connection cable 2x0,14 (2m) high flexibility cable 3x0,14 (2m) high flexibility

CODING EXAMPLE

CS T - 2 2 0 N - 5

SERIES CS SLOT TYPE T = T-slot V = V-slot H = frontal inserting slot OPERATION 2 2 = reed NO 3 = electronic 4 = reed NC CONNECTIONS
2 = 2 wires (Reed only)
3 = 3 wires
5 = 2 wires with M8 connector (Reed only) 2 6 = 3 wires with M8 connector POWER SUPPLY VOLTAGE 0 0 = 10-110V DC; 10-230V AC (PNP) 1 = 30-110V DC; 30-230V AC (PNP) 2 = 3 wires cst (PNP) 3 = 10-30V AC/DC (PNP) 4 = 10-27V DC (PNP) NOTE N = ACCORDING TO NORM (CST/CSV-250N only) N LENGTH OF THE CABLE (for CSH only): 5

SWITCHES ELECTRICAL CONNECTIONS

Reed switches

BN = brown

BU = blue

BK = black

Electronic switches

LOAD

BN = brown

BU = blue

BK = black

Connecting schemes in series

The Reed version with 3 wires allows the connection of several sensors in series, as there is no voltage drop between the supply and the load (see connecting scheme).

The voltage drop is 2,8V for the Reed sensors with 2 wires and 1V for Hall effect sensors with 3 wires.

BN = brown

BU = blue

BK = black

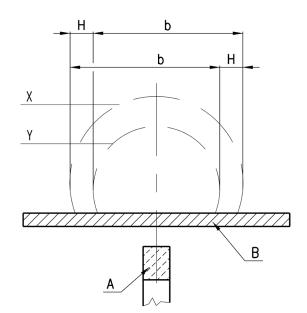
L = load

Useful information for correct use of the magnetic sensors

The magnetic sensors consist of a reed switch which is enclosed in a glass bulb containing a rarified gas. The contacts, which are made of magnetic material (nickel-iron), are flexible and are coated, at the contact points with a high quality non-arcing material.

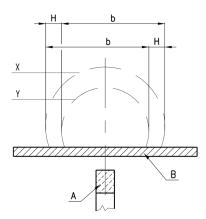
Switching is effected by means of a suitable magnetic field and actuation is achieved by means of the permanent magnet inside the piston. The two sensors are of the normally open type and, therefore, when they are subject to the effect of the magnetic field, they close the circuit.

The operating field of the sensors with respect to the magnetic piston is shown in this picture. The dimension b indicates the amplitude of the magnetic field or switching field during which the circuit is closed. The value H represents the operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field. The operating field, as a result of hysteresis, is displaced by the dimension H in the opposite direction to movement of the piston.


The values b and H are shown in the table and are classified according to bore.

The maximum speed permitted for each cylinder is a function of the value b and the response time of the various components connected after the sensor.

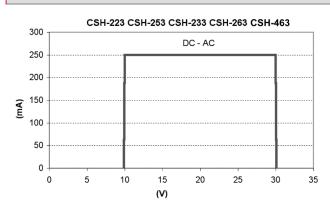
The maximum speed for a cylinder guided by magnetic sensors is calculated as follows: b / t = Speed


where: b = contact stroke in mm (see table)

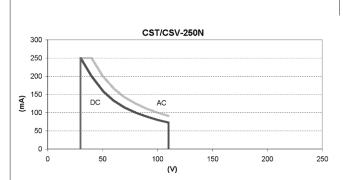
t = total reaction time in milli seconds of electric control components connected after the sensor Speed = maximum speed in m/second

CONTACT STROKE AND HYSTERESIS

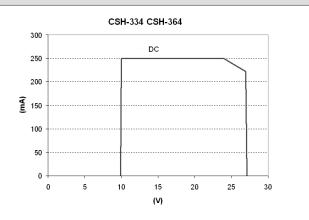
Useful information for correct use of the magnetic sensors: H = operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field b = contact stroke in mm

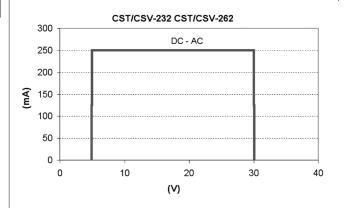


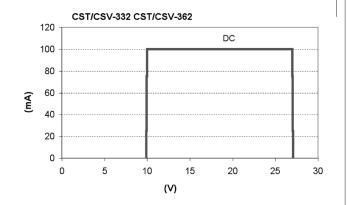
Series	Ø	b (mm)	H (mm)	Series	Ø	b (mm)	H (mm
24-25	16	9,2	1,2	60	32	9,9	1
24-25	20	12	1	60	40	8,9	1,2
24-25	25	11,7	1,1	60	50	10,7	1
27	20	10,5	1,6	60	63	12,9	1,2
27	25	10,9	1,6	60	80	11,5	1,4
27	32	10,7	1,1	60	100	14,9	1,4
27	40	12,1	1,7	60	125	22	1
27	50	12,1	1,2	61	32	9	1
27	63	14,1	1,3	61	40	9,3	1,3
QP	12	10	1,3	61	50	11	1,6
QP	16	11,8	1,5	61	63	13,4	1,3
QP	20	11,1	1,6	61	80	13,2	1,6
QP	25	10,6	1,6	61	100	15,2	1,7
QΡ	32	12,7	1,2	61	125	22,1	1,3
QP	40	12,5	1,1	42	32	10,8	1,5
QP	50	15,4	1,6	42	40	11,2	1,6
QP	63	16,7	1,5	42	50	12,6	1,7
QΡ	80	13,2	1,7	42	63	14,1	1,7
QP	100	16,8	1,8	QCT	20	10	1,7
31	12	9,2	1,4	QCT	25	11,4	1,8
31	16	7,9	1,3	QCT	32	12,1	1,8
31	20	9,1	1,5	QCT	40	12,4	1,8
31	25	10,6	1,5	QCT	50	13,7	1,9
31	32	11,9	1,7	QCT	63	13,5	1,8
31	40	12,9	2,2	69	32	34,5	3,8
31	50	14,7	1,2	69	40	29,6	4,1
31	63	15,2	1,4	69	50	31,5	4,6
31	80	16,6	1,8	69	63	32,3	3,1
31	100	16,8	1,7	69	80	24	2,9
40	160	24	2	69	100	25,6	2,9
40	200	26	2	69	125	30,1	1,7

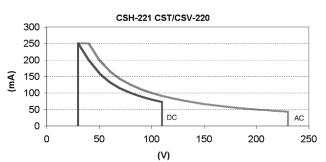

Series	Ø	b (mm)	H (mm)
62	32	10	1
62	40	11	1
62	50	12	1,2
62	63	13	1
62	80	13	1
62	100	16	1

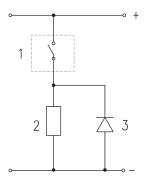
Load curves




Load curve - CST/CSV

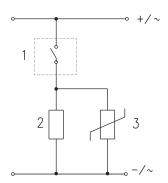

Load curve - CSH

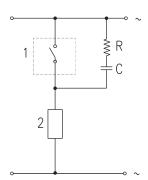

Load curve - CST/CSV



Load curve - CST/CSV

Load curve - CSH, CST/CSV


DC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.

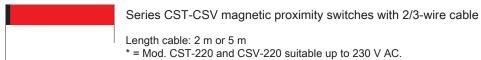

See picture above for a typical example.

Legend:

- 1 = Sensor
- 2 = Load
- 3 = Protection diode

Electric circuit with protection against voltage spikes

DC and AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes. See picture above for a typical example.

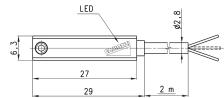

Legend:

- 1 = Sensor
- 2 = Load
- 3 = Protection varistor

AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric circuit with protection against the voltage spikes. See picture above for a typical example.

Legend:

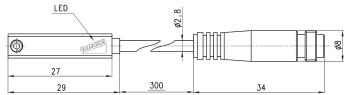
- 1 = Sensor
- 2 = Load
- C + R = Series of resistor and protection capacitor

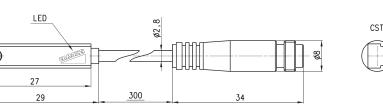


In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

CST

Mod.	Operation	Connections	Voltage (V)	Output	Max. current	Max Load	Protection
CST-220	Reed	2 wires	10 ÷ 110 AC/DC *	-	250 mA	10VA/8W	None
CSV-220	Reed	2 wires	10 ÷ 110 AC/DC *	-	250 mA	10VA/8W	None
CST-220-5	Reed	2 wires	10 ÷ 110 AC/DC *	-	250 mA	10VA/8W	None
CST-232	Reed	3 wires	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSV-232	Reed	3 wires	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CST-332	Electronic	3 wires	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage
CSV-332	Electronic	3 wires	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage

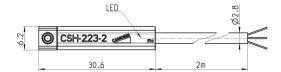

Series CST-CSV magnetic proximity switches with male connector M8 Length cable 0,3 mt.



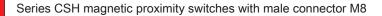
In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

CSV

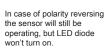
Mod.	Operation	Connections	Voltage (V)	Output	Max. current	Max Load	Protection
CST-250N	Reed	2 wires with M8 connector	10 ÷ 110 AC/DC	-	250 mA	10VA/8W	None
CSV-250N	Reed	2 wires with M8 connector	10 ÷ 110 AC/DC	-	250 mA	10VA/8W	None
CST-262	Reed	3 wires with M8 connector	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSV-262	Reed	3 wires with M8 connector	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CST-362	Electronic	3 wires with M8 connector	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage
CSV-362	Electronic	3 wires with M8 connector	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage



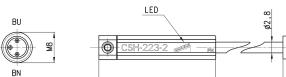
For max. operating current see load curves diagrams.

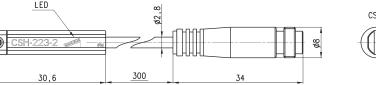


In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.



Mod.	Operation	Connections	Voltage (V)	Output	Max current	Max Load	Protection
CSH-223-2	Reed	2 wires	10 ÷ 30 AC/DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-223-5	Reed	2 wires	10 ÷ 30 AC/DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-221-2	Reed	2 wires	30 ÷ 230 AC - 30 ÷ 110 DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-221-5	Reed	2 wires	30 ÷ 230 AC - 30 ÷ 110 DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-233-2	Reed	3 wires	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSH-233-5	Reed	3 wires	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSH-334-2	Electronic	3 wires	10 ÷ 27 DC	PNP	250 mA	6W	Against polarity reversing and overvoltage
CSH-334-5	Electronic	3 wires	10 ÷ 27 DC	PNP	250 mA	6W	Against polarity reversing and overvoltage




For max. operating current see load curves diagrams.

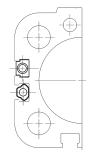
Mod.	Operation	Connections	Voltage (V)	Output	Max current	Max Load	Protection
CSH-253	Reed NO	2 wires with M8 connector	10 ÷ 30 AC/DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-263	Reed NO	3 wires with M8 connector	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSH-364	Electronic	3 wires with M8 connector	10 ÷ 27 DC	PNP	250 mA	6W	Against polarity reversing and overvoltage
CSH-463	Reed NC	3 wires with M8 connector	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing

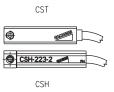
Sensors Series CST - CSH

CST/CSH sensors can be directly mounted on the following cylinders:

Series 31 - 31R

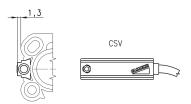
Series 32 - 32R


Series 52


Series 61

Series 62 (CSH only)

Series 69

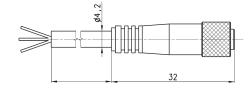

Series QC - QCBF - QCTF

Series CSV Sensors

CSV sensors must be assembled directly into the groove of cylinders: Series 50 ø 16÷25 Series QP - QPR ø 12÷16

Circular connectors M8, 3 Pin Female

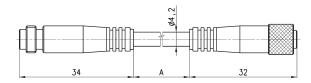
With PU sheathing, non shielded cable.


Protection class: IP65

BN = Brown BK = Black

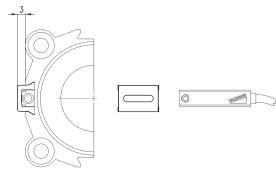
BU = Blue

In case of the use of sensors with two wires with connector M8 models CST-250N, CSV-250N, CSH-253 connect the brown wire to the input (+) and the black wire to the load.


Mod.	Length	
CS-2	2 m	
CS-5 CS-10	5 m	
CS-10	10 m	

Extension with connector M8, 3 Pin Male / Female

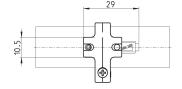
Non shielded



Mod.	cable length "A" (mt)	
CS-DW03HB-C250	2,5	
CS-DW03HB-C500	5	

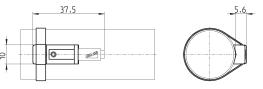
Mounting brackets for sensors Series CST-CSH

Mod.	Cylinders series	Ø
S-CST-01	QP-QPR	20 ÷ 100
S-CST-01	50	32 ÷ 80



Mounting brackets for sensors Series CST - CSH

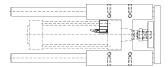
Materials:


- from S-CST-05÷12 stainless steel from S-CST-02÷04 and S-CST-18÷21 technopolymer.

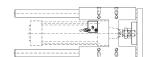


Mod.	Cylinders series	Ø
S-CST-02	24-25-27	16
S-CST-03	24-25-27	20
S-CST-04	24-25-27	25
S-CST-05	94, 95	16-20-25 (94), 16-20 (95)
S-CST-06	90-92-97, 95	32 (90-92-97), 25 (95)
S-CST-07	90-92-97	40
S-CST-08	90-92-97	50
S-CST-09	90-92-97	63
S-CST-10	90	80
S-CST-11	90	100
S-CST-12	90	125
S-CST-18	27-42	32
S-CST-19	27-42	40
S-CST-20	27-42	50
S_CST_21	27.42	63

Mounting brackets for sensors Series CST and CSH

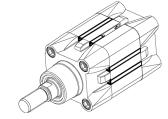


Mod.	Cylinders series	Ø
S-CST-25	60	32 ÷ 63
S-CST-26	60	80-100
S-CST-27	60	125
S-CST-28	40	160-200


Mounting brackets for sensors Series CST and CSH

For cylinders series 60 mounted with guides series 45NHT or 45NHB.

80 - 100



32 - 63

Mod.	Cylinders series	Ø
S-CST-45N1	60	32 ÷ 63
S-CST-45N2	60	80-100

Slot cover profile Mod. S-CST-500

Supplied with 500 mm tube

Slot cover profile for cylinders Series: 31 - 31 tandem and multi-position - QCT - QCB - QCBT-QCBF - 61 - 69 - 32 - 32 tandem and multi-position.

Mod.

S-CST-500